Unit 1:	Characteristics of Living Organisms <i>Key idea</i> 1 Life functions	1
Unit 2:	Organisation of the Organism	2
	Key idea 1 Examples of different groups of organisms	2
	Key idea 2 Concept and use of a classification system	5
	Key idea 3 The binomial system (binominal nomenclature)	7
	Key idea 4 The Biological species concept	7
	Key idea 5 Cell structure and organisation	8
	Key idea 6 Levels of Organisation Key idea 7 Size of Specimens	10 12
Unit 3:	Movement in and Out of Cells	13
	Key idea 1 Diffusion	13
	Key idea 2 Active transport	16
	Key idea 3 Osmosis	17
	Practice Questions 1	20
Unit 4:	Biological Molecules	50
	Key idea 1 Features of carbohydrates	50
	Key idea 2 Features of lipids	52
	Key idea 3 Features of proteins	53
	Key idea 4 Food test	54
Unit 5:	Enzymes	55
	Key idea 1 Mode of action of enzymes	55
	Key idea 2 Specificity of enzymes	56
	Key idea 3 Features of enzymes	57 58
	Key idea 4 Factors affecting the rate of enzyme-catalyzed reactions Key idea 5 Applications of enzymes in everyday life	50 59
	Practice Questions 2	60
Unit 6:	Plant Nutrition	69
	Key idea 1 Investigations of the factors required for photosynthesis	70
	Key idea 2 The process of photosynthesis in land plants	73
	Key idea 3 Limiting factors in photosynthesis Key idea 4 Leaf structure	75 76
	Key idea 5 Mineral requirements of plants	78
Unit 7:	Human Nutrition	79
	Key idea 1 Principal source and importance of different types of nutrients	79
	Key idea 2 Food additives	81
	Key idea 3 Human alimentary canal	82
	Key idea 4 The role of teeth in mechanical and physical digestion	85
	Key idea 5 Adaptation of the small intestine for absorption of nutrients	87
	Key idea 6 Assimilation of nutrients by the liver	89
	Key idea 7 Malnutrition	89
	Key idea 8 Diseases of the alimentary canal	90
	Practice Questions 3	92

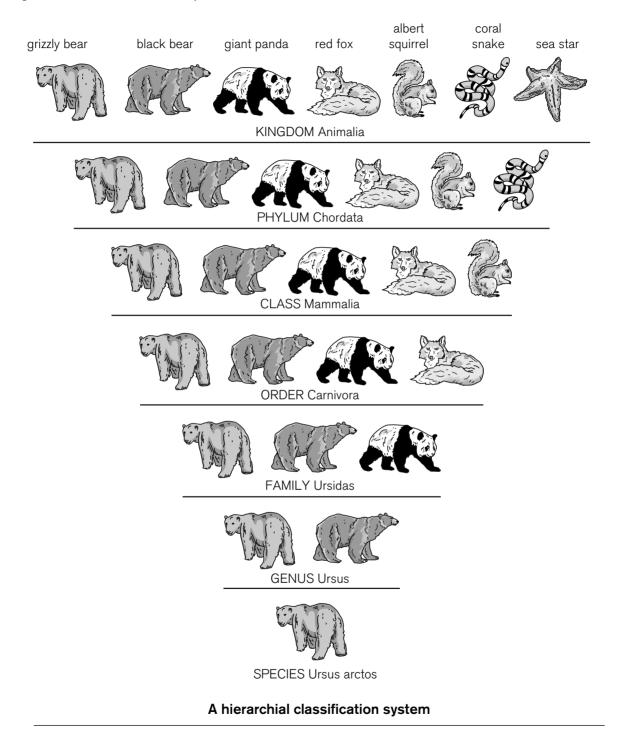
Characteristics of Living Organisms

There is no one definition of life that is accepted by all scientists. Most biologists agree that living organisms are able to perform certain functions. These functions are characteristic of life and can be used to determine whether the given object is living, dead or non-living.

Key idea 🚺 Life functions

UNIT

- Nutrition the taking in of nutrients which are organic substances and mineral ions, containing raw materials or energy for growth and tissue repair, absorbing and assimilating them.
- Excretion the removal from organisms of toxic materials, the waste products of metabolism (e.g. cellular respiration) and substances in excess of requirement.
- > Respiration the chemical reactions that break down nutrient molecules in living cells to release energy.
- > Sensitivity the ability to detect or sense changes in the environment (stimuli) and make responses.
- > Reproduction the processes that make more of the same kind of organisms.
- > Growth a permanent increase in size and dry mass by an increase in cell number or cell size or both.
- > Movement the action by an organism or part of an organism causing a change of position or place.


Key idea 2 Concept and use of a classification system

- > A widely used classification system places every known organism in one of five large groupings known as kingdoms which are:
 - (i) Monera (ii) Protoctista (iii) Fungi (iv) Plant and (v) Animal.

Kingdom	Common features
Monera	 Single cell (unicellular) organisms
	Lack nucleus
	Examples: bacteria and blue-green algae
Protoctista	 Single cell (unicellular) organisms
	 Contain nucleus
	 May contain chloroplast (photosynthesis)
	Examples: Euglena, Amoeba and Paramecium
Fungi	Made up of thread-like hyphae
	 Contain many nuclei throughout cytoplasm
	 Some species are parasites
	Examples: mushrooms, toadstools, yeast and mould
Plant	Multicellular organims
	 Contain cellulose cell wall
	 Contain chloroplast (photosynthesis)
	Examples: algae, mosses, ferns, conifers and flowering plants
Animal	Multicellular organims
	Ingest solid food
	Internal digestion
	Examples: worms, insects, fish, amphibia, reptiles, birds, mammals, etc.

- > The organisms within each kingdom share many broad characteristics but there is also considerable diversity or differences among them.
- > Each kingdom is subdivided into smaller groups showing higher degrees of similarities.
- > Species is the smallest group where the members share the greatest number of similarities.
- > Closely related species are grouped into a genus (plural: genera).

- > Related genera are grouped into a family; families into an order, orders into a class, classes into a phylum (plural: phyla); phyla into a kingdom.
- > The members of a species are so similar biologically (e.g. anatomy, physiology and behaviour) that they share genetic information and reproduce more individuals like themselves.

> Note: There are other classification systems (e.g. cladistics based on RNA / DNA sequencing data).

Key idea 3 The binomial system (binominal nomenclature)

- > A naming system (nomenclature) assists scientists to express the differences and similarities.
- > The binomial system of naming species is a "two-parts" system showing the genus and species.
- > The two names used are the genus name (always written in uppercase) and the species name (lowercase)
- The language used in the naming system is Latin and it was first devised by Carolus Linneaus in the 18th century.

Key idea 4 The Biological species concept

- > With such a vast number of organisms, it is important to name and place the different organisms into groups. A species is defined as a group of organisms that can reproduce to produce fertile offspring.
- Hence, classification systems aim to reflect evolutionary relationships. Traditional classification is based on studies of morphology and anatomy. Organisms that display similar morphological and anatomical features are likely to share a common ancestor. However, interpretation of such features could be subjective. Furthermore, it may be difficult to use these features to distinguish closely related species.
- A more accurate means of classification is to use sequences of bases in DNA and of amino acids in proteins. This involves comparing and analysis of the nucleotide sequence in DNA/RNA or amino acid sequence in proteins of different organisms.
- Organisms that are more closely related should share a greater similarity in their DNA or amino acid sequences. They would have shared a more recent common ancestor and inherited the DNA from their ancestor. As the descendent of same species evolve independently, there is an accumulation of mutations in their DNA.
- Molecular data is unambiguous and objective as it is based strictly on heritable material. The nucleotides A,T,C and G are easily recognisable compared to morphological and anatomical structures, where the interpretation may be subjective. Furthermore, such molecular data is quantifiable. It is also easily converted into numerical form and this can be used for statistical analysis.