Contents

11 Electric Fields

lectric Fields		1
Introduction	4	
Concept of a field	4	
Test Charge	5	
Electric Lines of Force or Electric Field Lines	5	
Electric Field Intensity	7	
Static Electric field	7	
Conservation of charges	8	
Charging an object	8	
Coulomb's Law	8	
Permittivity	9	
Electric Field Strength, E	10	
Graphs for Electric Field Strength	11	
Uniform Electric Fields	14	
Electric Potential Energy, U	18	
Electric Potential, V	19	
Potential Difference	21	
The Electron Volt	22	
Relationship between V and E	23	
Special case for uniform parallel plates	24	
Equipotential Lines	25	
Comparison chart between Gravitational and Electric forces	26	

12 Current of Electricity

Charges	32
Flow of Charged Particles	32
Conventional Current	32
Electric Current	32
Ampere (A)	33
Coulomb (C)	33
Flow of charges in an Electrical Conductor (eg: metal)	33
Flow of charges in an insulator (eg: plastic)	34
Flow of charges in a semiconductor (eg: silicon)	34
Flow of charges in an electrolyte (eg: copper(II) sulphate solution)	35
Flow of charges in gases (eg: gas discharge tube)	35
Potential Difference (p.d.)	35
Ohm's Law	38
Resistance	39
Resistivity, Q	39
I - V characteristics of various devices	40

29

16

Alternating Current

Introduction	136
Features - Direct Current (dc)	136
Features - Alternating Current (ac)	137
Important terms and formulae	138
Representations	139
Root Mean Square (rms)	140
Power dissipation in ac circuits	147
Transformer	149
Power Distribution	154
Rectification	154
Half-wave rectification	156

17

Quantum Physics

-	
Introduction	164
Einstein's Quantum Theory of Light	164
Energy of a Photon	165
Photoelectric Effect	167
Wave particle duality	179
Millikan's Oil Drop Experiment simplified	183
Energy Levels in an atom	185
Electron transitions between energy levels	188
Line spectra	191
X-Ray Spectra	195
Heisenberg's Uncertainty Principle	203

Nuclear Physics

Introduction	214
History of the Atom	214
Gold Foil Alpha - particle ($lpha$ -particle) scattering experiment	215
Simple Model for the Atom	222
Nucleons	222
Protons	222
Electrons	222
Neutrons	222
Nuclide Notation	223
Isotopes	223
The Unified Atomic Mass, u	224
Einstein Mass - Energy Equation	225
Mass Defect	226
Binding Energy (BE)	226
Binding Energy (BE) per Nucleon	227
Nuclear Reactions	232
Laws of Conservation in Nuclear Reactions	234
Radioactivity	237
The Decay Law	241
Decay Constant (Disintegration Constant)	241
The Decay Law Equation	242
Activity	242

161

211

speed of light in free space

permeability of free space permittivity of free space

elementary charge

the Planck constant

unified atomic mass constant

rest mass of electron

rest mass of proton

molar gas constant

the Avogadro constant

the Boltzmann constant

gravitational constant

acceleration of free fall

 $c = 3.00 \times 10^8 \text{ m s}^{-1}$ $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ $e = 1.60 \times 10^{-19} \text{ C}$ $h = 6.63 \times 10^{-34} \text{ Js}$ $u = 1.66 \times 10^{-27} \text{ kg}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ $m_p = 1.67 \times 10^{-27} \text{ kg}$ $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ $g = 9.81 \text{ m s}^{-2}$

Introduction

- > Frictional and tensional forces are contact forces
- > Produced when objects come into contact with each other
- > Electric, Magnetic and Gravitational forces are non-contact forces
- > Their effects are prevalent even at a distant
- > Example: Magnet attracting a nail

Magnetic force

> Example: Apple falling to the ground from a tree

Gravitational force

- > This was an action-at-a-distance phenomenon
- > This puzzled many scientists back then
- > To resolve this, the concept of a field was introduced.

Concept of a field

- > An electric field is a region of space in which a charge experiences an electric force
- A positive or negative charge produces an electric field that emanates into space surrounding the charge

> When another charge is brought into the field, it experiences a force

Test Charge

- > Used to detect an electric field
- > By definition, it is so small it will not affect the original electric field
- > By convention, they are positive

Electric Lines of Force or Electric Field Lines

> Path along which a positive test charge will move in an electric field

- > When 2 charges are placed close to each other, the lines of force are curved
- > The direction of force on the test charge will be tangential to these lines of force

