Contents

	1
4	
4	
5	
5	
8	
9	
9	
9	
12	
12	
13	
14	
14	
16	
16	
	4 5 5 8 9 9 9 9 12 12 12 12 13 14 14 14 16 16

2

Kinematics

Inematics	
Distance vs Displacement	28
Speed vs Velocity	28
Acceleration	29
Sign Convention	31
Describing Graphs of Motion	34
Displacement Time(s-t) Graphs	34
Velocity-time (v-t) Graphs	39
Acceleration Time (a-t) Graphs	43
Relationship between s, v and a	45
Equations of Motion	53
Free Falling Object	54
Object Falling with Air Resistance	54
Projectile Motion on a Flat Ground (Non-Rectilinear Motion)	55

26

64

3 Forces and Dynamics

Types of Forces	68
Types of forces on an object	69
Contact Force	69
Non-contact Force	73
Hooke's Law	74
Principle of Moments	78
Moment of a Force	78
Torque	79
Couple	79
Free-Body Diagram	79

speed of light in free space

permeability of free space permittivity of free space

elementary charge

the Planck constant

unified atomic mass constant

rest mass of electron

rest mass of proton

molar gas constant

the Avogadro constant

the Boltzmann constant

gravitational constant

acceleration of free fall

 $c = 3.00 \times 10^8 \text{ m s}^{-1}$ $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$ $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ $e = 1.60 \times 10^{-19} \text{ C}$ $h = 6.63 \times 10^{-34} \text{ Js}$ $u = 1.66 \times 10^{-27} \text{ kg}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ $m_p = 1.67 \times 10^{-27} \text{ kg}$ $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ $g = 9.81 \text{ m s}^{-2}$

Physical Quantities

- > Properties that can be measured / calculated.
- > Can be expressed in numbers / values.
- > Derived from the word "physics". So basically, they are quantities in physics.

Base Quantities (Fundamental Quantities) and Base Units

- > Base quantities are physical quantities that are most fundamental
- > Independent of other quantities.
- > Do not vary with time
- > Accessible
- > Accurately reproducible
- > There are 7 base quantities
- > Base Units are units of base quantities

Base Quantity	Symbol	SI Units	Base Unit / Symbol for Units
Mass	m	metre	kg
Length	l	kilogram	m
Time	t	second	S
Current	Ι	ampere	А
Temperature	Т	Kelvin	К
Amount of Substance	η	mole	mol
Luminous Intensity	L	candela	cd

<u> M. Think Activity</u>

Q: Do we use meter or metre to denote length? **A:** We use metre. Meter is an equipment.

4

Prefix

- > Prefixes are attached to a unit when dealing with very large or very small numbers.
- > They usually accompany standard forms learnt in lower secondary.

Applications

Q: Why do we use prefixes?

A: It is easier to use prefixes

rather than standard forms.

Power	Prefix	Symbol
10 ⁻¹²	pico	р
10-9	nano	n
10-6	micro	h
10-3	milli	m
10-2	centi	с
10-1	deci	d
10 ³	kilo	k
10 ⁶	Mega	Μ
10 ⁹	Giga	G
10 ¹²	Tera	T

Practical Applications It is easier to say that a hard disk has a capacity of 1T bytes than 1×10^{12} bytes

Republications We usually say the bacteria has a diameter of 2 picometre, i.e. 2 pm, instead of 2×10^{-12} m. bacteria

8

🗹 Example

Q: An object has length (5.00 ± 0.01) m, breadth (2.10 ± 0.01) m, depth (1.90 ± 0.01) m. Calculate the volume of the object.

A: Step 1: Calculate the volume of the object using the actual values. $V = 5.00 \times 2.10 \times 1.90 = 19.95 \text{ m}^3$

Step 2: Calculate the uncertainty ΔV using the equations above.

$$V = l \times b \times h$$

$$\frac{\Delta V}{V} = \frac{\Delta l}{l} + \frac{\Delta b}{b} + \frac{\Delta h}{h} = \left(\frac{0.01}{5} + \frac{0.01}{2.10} + \frac{0.01}{1.90}\right)$$
So $\Delta V = \left(\frac{0.01}{5.00} + \frac{0.01}{2.10} + \frac{0.01}{1.90}\right) \times V$

$$= (0.012025)(19.95)$$

$$= 0.2399$$

$$= 0.2 (1 \text{ sf})$$
Step 3: Present it correctly
$$(19.95 \pm 0.2) \text{ m}^{3}$$

$$= (20.0 \pm 0.2) \text{ m}^{3}$$

$$= (20.0 \pm 0.2) \text{ m}^{3}$$
Instance of the second sec

