Contents

1 Measurements 1
Physical Quantities 4
Base Quantities (Fundamental Quantities) and Base Units 4
Mole 5
Derived Quantities and Derived Units 5
Prefix 8
Homogeneity 9
Dimensionless Constants 9
Uncertainty 9
Errors 12
Random Error 12
Systematic Error 13
Precision 14
Accuracy 14
Scalars 16
Vectors 16
2 Kinematics 26
Distance vs Displacement 28
Speed vs Velocity 28
Acceleration 29
Sign Convention 31
Describing Graphs of Motion 34
Displacement Time(s-t) Graphs 34
Velocity-time (v-t) Graphs 39
Acceleration Time (a-t) Graphs 43
Relationship between s, v and a 45
Equations of Motion 53
Free Falling Object 54
Object Falling with Air Resistance 54
Projectile Motion on a Flat Ground (Non-Rectilinear Motion) 55
3 Forces and Dynamics 64
Types of Forces 68
Types offorces on an object 69
Contact Force 69
Non-contact Force 73
Hooke's Law 74
Principle of Moments 78
Moment of a Force 78
Torque 79
Couple 79
Free-Body Diagram 79
speed of light in free space permeability of free space permittivity of free space elementary charge the Planck constant unified atomic mass constant rest mass of electron rest mass of proton molar gas constant the Avogadro constant the Boltzmann constant gravitational constant acceleration of free fall

$$
\begin{aligned}
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
e & =1.60 \times 10^{-19} \mathrm{C} \\
h & =6.63 \times 10^{-34} \mathrm{Js} \\
u & =1.66 \times 10^{-27} \mathrm{~kg} \\
m_{\mathrm{e}} & =9.11 \times 10^{-31} \mathrm{~kg} \\
m_{\mathrm{p}} & =1.67 \times 10^{-27} \mathrm{~kg}^{2} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
N_{\mathrm{A}} & =6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
k & =1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
G & =6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
g & =9.81 \mathrm{~m} \mathrm{~s}^{-2}
\end{aligned}
$$

Physical Quantities

> Properties that can be measured / calculated.
> Can be expressed in numbers / values.
> Derived from the word "physics". So basically, they are quantities in physics.

Base Quantities (Fundamental Quantities) and Base Units

> Base quantities are physical quantities that are most fundamental
> Independent of other quantities.
> Do not vary with time
> Accessible
> Accurately reproducible
> There are 7 base quantities
> Base Units are units of base quantities

Base Quantity	Symbol	SI Units	Base Unit / Symbol for Units
Mass	m	metre	kg
Length	ℓ	kilogram	m
Time	\dagger	second	s
Current	I	ampere	A
Temperature	T	Kelvin	K
Amount of Substance	η	mole	mol
Luminous Intensity	L	candela	cd

Q: Do we use meter or metre to denote length?
A: We use metre. Meter is an equipment.

Prefix

> Prefixes are attached to a unit when dealing with very large or very small numbers.
> They usually accompany standard forms learnt in lower secondary.

4. Prastical Applicaitions

Q: Why do we use prefixes?
A: It is easier to use prefixes rather than standard forms.

Power	Prefix	Symbol
10^{-12}	pico	p
10^{-9}	nano	n
10^{-6}	micro	$\mathrm{\mu}$
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d
10^{3}	kilo	k
10^{6}	Mega	M
10^{9}	Giga	G
10^{12}	Tera	T

Example

Q: An object has length $(5.00 \pm 0.01) \mathrm{m}$, breadth $(2.10 \pm 0.01) \mathrm{m}$, depth $(1.90 \pm 0.01) \mathrm{m}$.
Calculate the volume of the object.
A: Step 1: Calculate the volume of the object using the actual values.

$$
V=5.00 \times 2.10 \times 1.90=19.95 \mathrm{~m}^{3}
$$

Step 2: Calculate the uncertainty ΔV using the equations above.

$$
\begin{aligned}
& V=l \times b \times h \\
& \begin{aligned}
\frac{\Delta V}{V} & =\frac{\Delta l}{l}+\frac{\Delta b}{b}+\frac{\Delta h}{h}=\left(\frac{0.01}{5}+\frac{0.01}{2.10}+\frac{0.01}{1.90}\right) \\
\text { So } \Delta V & =\left(\frac{0.01}{5.00}+\frac{0.01}{2.10}+\frac{0.01}{1.90}\right) \times V \\
& =(0.012025)(19.95) \\
& =0.2399 \\
& =0.2(1 \mathrm{sf})
\end{aligned}
\end{aligned}
$$

Step 3: Present it correctly

$$
\begin{aligned}
& (19.95 \pm 0.2) \mathrm{m}^{3} \\
& =(20.0 \pm 0.2) \mathrm{m}^{3}
\end{aligned}
$$

Note

If a question asks to find fractional uncertainty, then calculate $\frac{\Delta V}{V}$.

- If a question asks to find percentage uncertainty, then multiply the fractional uncertainty by 100%, i.e.

$$
\frac{\Delta V}{V} \times 100 \%
$$

Q: Let diameter of circle $=d$ and radius of circle $=r$.
If $d=2 r, \frac{\Delta d}{d}=\frac{\Delta r}{r}$
If $d=r+r, \Delta d=\Delta r+\Delta r$. Hence $\Delta d=2 \Delta r$
Which is correct?
A: Both
Equation (1) shows that the relationship between the ratios.
Equation (2) shows the direct relationship between Δd and Δr.
Always remember: $\Delta d=2 \Delta r$

