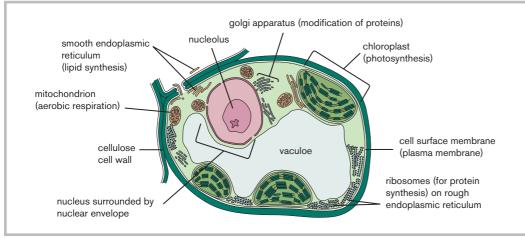
# **Contents**

| Section 1: Cell Structures |                                                       |    |
|----------------------------|-------------------------------------------------------|----|
| 1.1                        | Cell organelles                                       | 1  |
| 1.2.                       | Transport of proteins                                 | 7  |
|                            |                                                       |    |
| Secti                      | on 2: Biological Molecules                            | 8  |
| 2.1                        | Carbohydrates                                         | 8  |
| 2.2                        | Lipids (fats)                                         | 12 |
| 2.3                        | Proteins                                              | 15 |
| 2.4                        | Collagen and hemaglobin                               | 17 |
| 2.5                        | Enzymes                                               | 19 |
|                            |                                                       |    |
| Secti                      | on 3: Cell Division                                   | 28 |
| 3.1                        | Basic terminologies related to cell division          | 28 |
| 3.2                        | Mitosis                                               | 29 |
| 3.3                        | Meiosis                                               | 34 |
| <u> </u>                   |                                                       |    |
|                            | on 4: DNA and Genomics I                              | 40 |
| 4.1                        | Structure and function of DNA                         | 40 |
| 4.2                        | Semi-conservative replication of DNA                  | 42 |
| 4.3                        | Experimental evidence (Meselson and Stahl experiment) | 44 |
| Cast                       | ion F. DNA and Conomics II                            | 47 |
|                            | ion 5: DNA and Genomics II                            | 47 |
| 5.1                        | Structure and function of RNA                         | 47 |
| 5.2                        | Transcription                                         | 48 |
| 5.3                        | Post-transcriptional modifications                    | 50 |
| 5.4                        | Translation                                           | 52 |
| 5.5                        | Mutations                                             | 54 |
|                            |                                                       |    |

| Sect | ion 6: Genetics of Viruses                | 58 |
|------|-------------------------------------------|----|
| 6.1  | Viruses are obligate parasites            | 58 |
| 6.2  | Structure of viruses                      | 59 |
| 6.3  | The lytic cycle                           | 60 |
| 6.4  | The lysogenic cycle                       | 61 |
| 6.5  | Reproductive cycle of the influenza virus | 62 |
| 6.6  | Reproductive cycle of the HIV virus       | 63 |
| 6.7  | Harmful effects of viruses                | 64 |
|      |                                           |    |
| Sect | ion 7: Genetics of Bacteria               | 66 |

| 7.1 | The bacterial chromosome               | 66 |
|-----|----------------------------------------|----|
| 7.2 | Binary fission                         | 67 |
| 7.3 | Mechanisms of horizontal gene transfer | 68 |
| 7.4 | Bacterial genes: operons               | 71 |
|     |                                        |    |


77

## Section 8: Control and Organisation of the Prokaryotic and Eukaryotic Genome

| 8.1 | Comparison between prokaryotic and eukaryotic genomes | 77 |
|-----|-------------------------------------------------------|----|
| 8.2 | Structure and function of the non-coding regions      | 79 |
| 8.3 | Control of gene expression                            | 82 |
| 8.4 | Gene amplification                                    | 88 |
| 8.5 | Proto-oncogenes and tumour suppressor genes           | 90 |
| 8.6 | Cancer as a multi-step process                        | 92 |

| Section 9: Genetic Basis of Variation 94 |                                   | 94  |
|------------------------------------------|-----------------------------------|-----|
| 9.1                                      | Definitions                       | 94  |
| 9.2                                      | Inheritance Patterns              | 95  |
| 9.3                                      | Chi-square (X <sup>2</sup> ) Test | 104 |

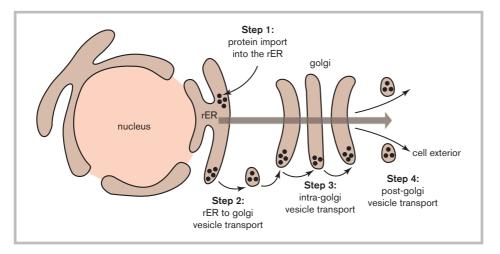
Exam Tidbits!



Typical plant cell structure

### Nucleus

The DNA located in the nucleus is linear. Unlike the circular prokaryotic chromosomes, the linear chromosomes in eukaryotes are made up of DNA associated with proteins (e.g. histones).


Refer to Section 8: Organisation and control of prokaryotic and eukaryotic genome

2

| Organelle/structure                      | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Function                                                                                                                                                                                                                                                                                                                                                                                                    | Exam Tidbit |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Smooth<br>endoplasmic<br>reticulum (sER) | <ul> <li>Single membrane-bound organelle.</li> <li>Consists of a series of interconnected tubules and vesicles.</li> <li>Does not contain any ribosomes on its surface.</li> </ul>                                                                                                                                                                                                                                                                            | <ul> <li>Lipid synthesis and transport.</li> <li>Metabolism of carbohydrates.</li> <li>Detoxification of drugs and poisons.</li> <li>Storage of calcium ions for muscle contraction.</li> </ul>                                                                                                                                                                                                             |             |
| Golgi apparatus/<br>Golgi body           | <ul> <li>Single membrane-bound organelle</li> <li>Consists of a stack of flattened<br/>membrane-bound sacs called cisternae and<br/>associated vesicles</li> <li>The cisternae are continuously formed at one<br/>end (i.e. forming face/cis face) by fusion of<br/>transport vesicles that bud off from ER.</li> <li>The cisternae continuously breaks down at other<br/>end (i.e. maturing face/trans face) as secretory<br/>vesicles pinch off.</li> </ul> | <ul> <li>Temporar storage, packaging and transport of secretory proteins.</li> <li>Proteins may be further chemically modified (e.g. via glycosylation, which involves the attachment of carbohydrate chains to form glycoproteins).</li> <li>Produce lysosomes and cell walls.</li> </ul>                                                                                                                  |             |
| Lysosome                                 | <ul> <li>Single membrane-bound organelle.</li> <li>Exist as spherical sacs that contain hydrolytic enzymes (e.g. lipases, proteases, nucleases).</li> <li>They work best at an acidic pH of 5.</li> </ul>                                                                                                                                                                                                                                                     | <ul> <li>Protects organism from pathogens or derive its food source.</li> <li>Digests materials (e.g. pathogenic bacteria or food material) taken in by endocytosis. The products of digestion are then absorbed and assimilated by the cell.</li> <li>Autophagy: Break down worn-out organelles within a cell.</li> <li>Autolysis: Destruction of a cell when it is damaged beyond repair/dead.</li> </ul> |             |

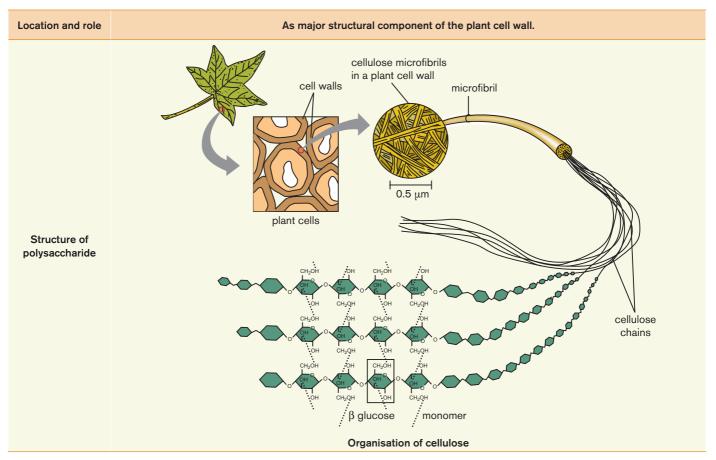
### © Fairfield Book Publishers Pte. Ltd.

## 1.2. Transport of proteins



- The amino acids are first incorporated into a polypeptide chain by the **ribosomes** attached to the **rough endoplasmic reticulum**.
- As the new polypeptide chain enters the lumen of the rough endoplasmic reticulum, it will fold into its specific 3D configuration.
- The protein molecule is packaged into transport vesicles which buds off the rER.
- Transport vesicles move towards the Golgi body and fuse with the cis-face of the Golgi body.
- Chemical modification of the protein occurs in the Golgi body, such as glycosylation or phosphorylation.
- The modified protein is then packaged into secretory vesicles, which bud off from the trans face of the
- Golgi body.
- Secretory vesicles move to and fuse with the cell surface membrane (plasma membrane), releasing the protein via exocytosis.

## Exam Tidbits!


#### Protein transport

Although protein transport is not explicitly stated in the syllabus, students have been tested on their understanding of this concept before.

For proteins that are secreted or embedded in the cell surface membrane, they follow a common pathway of transport from the rER to the Golgi body.

The difference is that proteins which are not secreted will be embedded in the cell surface membrane upon fusion of the secretory vesicles with the cell surface membrane.

## Cellulose



#### A Level Biology Comprehensive Guide