

	Mathematics Formula	V
1.	Functions	1
2.	Inequalities	11
3.	System of Linear Equations	15
4.	Curve Sketching	21
5.	Transformations	28
6.	Sequences	40
7.	Series	50
8.	Differentiation	58
9.	Application of Differentiation	63
10.	Maclaurin's Series	71
11.	Binomial Series	78
12.	Integration	84
13.	Application of Integration	89
14.	Differential Equations	96
15.	Vectors	105
16.	Complex Numbers	115
17.	Parametric Equations	123
18.	Permutations & Combinations	129
19.	Probability	136
20.	Discrete Random Variable	145
21.	Binomial Distribution	154
22.	Normal Distribution	163
23.	Sampling Distribution	172
24.	Hypothesis Testing	182
25.	Correlartion & Regression	197
	Answers	211

Algebraic series

Binomial expansion:

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \binom{n}{3}a^{n-3}b^{3} + \dots + b^{n}, \text{ where } n \text{ is a positive integer and}$$
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Maclaurin expansion:

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^n}{n!} f^{(n)}(0) + \dots$$
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!} x^r + \dots \qquad (|x| < 1)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{r}}{r!} + \dots$$
 (all x)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^r x^{2r+1}}{(2r+1)!} + \dots$$
 (all x)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^r x^{2r}}{(2r)!} + \dots$$
(all x)

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{r+1}x^r}{r} + \dots \qquad (-1 < x \le 1)$$

Partial fractions decomposition

Non-repeated linear factors:

$$\frac{px+q}{(ax+b)(cx+d)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)}$$

Repeated linear factors:

$$\frac{px^{2} + qx + r}{(ax+b)(cx+d)^{2}} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^{2}}$$

Non-repeated quadratic factor:

$$\frac{px^2 + qx + r}{(ax+b)(x^2 + c^2)} = \frac{A}{(ax+b)} + \frac{Bx + C}{(x^2 + c^2)}$$

Probability and Statistics

Standard discrete distributions

Distribution of <i>X</i>	$\mathbf{P}(X=x)$	Mean	Variance
Binomial B(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Poisson $Po(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ
Geometric Geo(<i>p</i>)	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Standard continuous distribution

Distribution of <i>X</i>	p.d.f.	Mean	Variance
Exponential	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Sampling and testing

Unbiased estimate of population variance:

$$s^{2} = \frac{n}{n-1} \left(\frac{\Sigma(x-\overline{x})^{2}}{n} \right) = \frac{1}{n-1} \left(\Sigma x^{2} - \frac{(\Sigma x)^{2}}{n} \right)$$

Unbiased estimate of common population variance from two samples:

$$s^{2} = \frac{\Sigma(x_{1} - \overline{x}_{1})^{2} + \Sigma(x_{2} - \overline{x}_{2})^{2}}{n_{1} + n_{2} - 2}$$

Regression and correlation

Estimated product moment correlation coefficient:

$$r = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\sqrt{\left\{\Sigma(x - \overline{x})^2\right\}\left\{\Sigma(y - \overline{y})^2\right\}}} = \frac{\Sigma xy - \frac{\Sigma x \Sigma y}{n}}{\sqrt{\left(\Sigma x^2 - \frac{(\Sigma x)^2}{n}\right)\left(\Sigma y^2 - \frac{(\Sigma y)^2}{n}\right)}}$$

Estimated regression line of y on x:

$$y - \overline{y} = b(x - \overline{x}), \text{ where } b = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{\Sigma(x - \overline{x})^2}$$

Chapter 1

Functions

Beginner

1. This question is about range of functions.

Find the exact range of the following functions,

- (a) $f(x) = x(x-4), x \ge 0;$ [2]
- (b) $f(x) = x(x-4), 0 \le x \le 4;$ [2]
- (c) $f(x) = \ln(x+3), x > -3;$ [2]
- (d) $f(x) = \ln(x+3), 1 \le x \le 3;$ [2]
- (e) $f(x) = e^x + 2, -3 \le x \le 3.$ [2]

2. This question is about inverse functions.

- (i) For the following functions, find the inverse function, f⁻¹, giving its rule, domain and range.
- (ii) Sketch, on the same diagram the graphs of f(x) and its inverse, showing the relationship between them.
 - (a) $f(x) = x(x-4), x \le -4;$ [4]
 - (b) $f(x) = \ln(x+3), x > -3;$ [4]
 - (c) $f(x) = e^x + 2, x < -3.$ [4]

3. This question is about composite functions.

The functions f, g, and h are given as follows:

$$f: x \mapsto 1 - e^{-2x}, x \in \mathbb{R}^+,$$
$$g: x \mapsto \ln(3 + 2x), x \in \mathbb{R}^+,$$
$$h: x \mapsto 4 + \sin(\pi x), x \in \mathbb{R}^+.$$

- (i) Find the ranges of f(x), g(x) and h(x). [6]
- (ii) Find the ranges of the composite function f ∘ g and h ∘ f. [3]

4. This question is about inverse and composite functions.

The functions g and h are given as follows:

 $g: x \mapsto 3 - x^2, x \in \mathbb{R}, x < k,$ $h: x \mapsto \ln(3 - x), x \in \mathbb{R}, x < 3.$

- (i) Find the largest integer value of k given that the inverse g⁻¹ exists, and define g⁻¹ in similar form. [4]
- (ii) Using the k found in (i), show that hg exists and find its corresponding range.[3]

5. This question is about composite functions.

The functions f, g, and h are given as follows:

$$f: x \mapsto -4x^2, x \in \mathbb{R},$$
$$g: x \mapsto e^{3x}, x \in \mathbb{R},$$
$$h: x \mapsto \ln(1-3x), x \in \mathbb{R}, x < 0.25.$$

Determine whether the composite functions gf, fh, hf and hg exist. [6] If the composite function exists, define the function in similar form and state its exact range. [4]

6. This question is about inverse functions.

The function f is given as follows:

$$f: x \mapsto \frac{1}{ax}, x \ge \frac{1}{a},$$

where *a* is a constant greater than or equals to 1. Solve the equation $f(x) = f^{-1}(x)$. [4]

Intermediate

1. This question is about piece wise functions.

The function f is given as follows:

$$f(x) = \begin{cases} 7 - 2x, & 0 \le x < 3, \\ (2x - 5)^2, & 3 \le x < 4. \end{cases}$$

and it is given that f(x-4) = f(x) for all real values of x.

- (i) State a reason why f does not have an inverse. [1]
- (ii) Sketch the graph of y = f(x)for $-2 < x \le 7$.
 - [3]
- (iii) Evaluate f(2019). [1]
- **2.** This question is about inverse and composite functions. The function f is given as follows:

$$f: x \mapsto \frac{a}{(2x-4)^2}, x \in \mathbb{R}, x \neq 2$$

where *a* is a positive constant.

- (i) State the largest possible domain of f in the form of $(-\infty, b)$ such that the inverse function of f exists, where *b* is to be determined. [1]
- (ii) Hence, define f^{-1} in a similar form, in terms of a. [3]

The functions g and h are given as follows:

$$g: x \mapsto \ln(2x+3), x \in (-1,1],$$
$$h: x \mapsto x^3 - 2x - 1, x \in \mathbb{R}^+.$$

- (iii) Verify whether the composite function gh exists. [2]
- (iv) Find the rule and domain of the composite function hg, and hence find its range. [3]

3. This question is about inverse and composite functions.

The functions u and v are given as follows:

 $u: x \mapsto \log_a x, x \in \mathbb{R}^+,$

where *a* is a constant greater than 1,

$$\mathbf{v}: x \mapsto \frac{1}{x}, x \in \mathbb{R}^+$$

(i) State the ranges of u and v, and show that if t denotes the composite function $\mathbf{u} \circ \mathbf{v}$, then $\mathbf{t}(x) + \mathbf{u}(x) = 0$.

[3]

- (ii) Explain briefly why the composite function $\mathbf{v} \circ \mathbf{u}$ cannot be properly defined unless the domain of u is restricted to a subset of \mathbb{R}^+ , and state the largest possible subset which would be suitable for you to be defined. [2]
- (iii) Define the inverses of u and v in similar form, and determine whether or not. $t^{-1}(x) + u^{-1}(x) = 0$ [4]
- **4.** This question is about inverse and composite functions.

The functions f and g are given as follows:

$$\mathbf{f}: x \mapsto \frac{ax}{2x-2}, x \in \mathbb{R}, x > 1,$$

where *a* is a constant greater than 4,

$$g: x \mapsto e^{2x^2-4}, x \in \mathbb{R}.$$

- (i) Sketch the graph of y = g(x), labelling any axial intercepts. [2]
- (ii) If the domain of g is further restricted to $[b,\infty)$, state with a reason the least value of b for which the function g^{-1} exists. [2]

1. This question is about inverse functions and piece wise functions.

The function f is given as follows:

$$f: x \mapsto \begin{cases} -1 - 2x & \text{for } -3 < x \le -1, \\ -x^3 & \text{for } -1 < x \le 1, \\ 2x + 1 & \text{for } 1 < x \le 3. \end{cases}$$

- (i) State the range of the function and sketch the graph of y = f(x). [3]
- (ii) Define the inverse function in similar form and determine whether this inverse function is a well-defined function. [5]

2. This question is about inverse and composite functions.

The function f is given as follows:

 $\mathbf{f}: x \mapsto \mid \ln(2x+8) \mid , x \in \mathbb{R}, -4 < x \leq a,$

where a is a real constant.

- (i) Explain why f^{-1} does not exist when a = 0. [2]
- (ii) State the maximum exact value of a such that the inverse function of f exists. [1]

Let *a* be the value found in (ii) for the rest of this question.

- (iii) Define the inverse function of f in a similar form. [2]
- (iv) The function g is defined by

$$g: x \mapsto b + e^{2x}, x \ge -\ln 2,$$

where b is a real constant. Show that the composite function gf exists and determine the exact range of gf in terms of b. [3]

3. This question is about inverse, composite and piece wise functions.

The function f is given as follows:

 $f: x \mapsto 3x^2 + 12x - 5, x \le a, a \in \mathbb{R}.$

 (i) Find algebraically, the largest integer value of a such that the inverse function of f exists. [2] For this value of a, define the inverse function of f in similar form. [3]

Another function g is defined by

$$g: x \mapsto \begin{cases} 3-2x^2, & \text{for } 0 < x \le 2, \\ -x-3, & \text{for } 2 < x \le 4, \end{cases}$$

and that $g(x) = g(x+4)$ for all real values of *x*.

(ii) Sketch the graph of
$$y = g(x)$$
 for $-3 < x \le 5$. [3]

- (iii) Using the previous results, explain why composite function f⁻¹g(x) exists and find the exact value of f⁻¹g(6) [3]
- **4.** This question is about inverse and composite functions. The function f is given as follows:

$$\mathbf{f}: x \mapsto a + \frac{3}{1-x}, x \in \mathbb{R}, x \neq 1,$$

where a is a negative real number.

- (i) By differentiating f(x), show that f⁻¹ exists. [2]
- (ii) Find the set of values of a such that the equation f(x) = 2x has real solutions. [3]

The functions g and h are given as follows:

$$g: x \mapsto f(x), x < 0,$$
$$h: x \mapsto \left[3x - \left(a + \frac{2}{3}\right)\right]^2, x \in \mathbb{R}$$

- (iii) Find the range of hg exactly, in terms of a. [2]
- **5.** This question is about inverse and composite functions.

The functions g and h are given as follows:

$$g: x \mapsto 1 + \frac{2}{x-a}, x \in \mathbb{R}, x < a, a \ge 1,$$
$$h: x \mapsto \ln x^2, x \in \mathbb{R}, 0 < x < 1.$$