Contents

1 Introduction to Algebra 1
1.1 Basics of Algebra 1
1.2 Like and Unlike Terms 3
2 Addition in Algebra 4
2.1 Simple Addition Involving 1 Variable 4
2.2 Simple Addition Involving 2 or More Variables 5
2.3 Simple Addition Involving Quadratic Terms 6
2.4 Simple Addition Involving Algebraic Fractions 7
2.5 Translating Phrases Into Algebraic Expressions 9
2.6 Spot the Mistakes! 10
Chapter Review 11
3 Subtraction in Algebra 13
3.1 Simple Subtraction Involving 1 Variable 13
3.2 Simple Subtraction Involving 2 or More Variables 14
3.3 Simple Subtraction Involving Quadratic Terms 15
3.4 Simple Subtraction Involving Algebraic Fractions 16
3.5 Translating Phrases into Algebraic Expressions 18
3.6 Spot the Mistakes! 19
Chapter Review 20
4 Multiplication in Algebra 21
4.1 Simple Multiplication Without Parentheses 21
4.2 Simple Multiplication Involving 1 Parenthesis: Simple Expansion 23
4.3 Simple Multiplication Involving 2 Parentheses: Further Expansion 26
4.4 Translating Phrases into Algebraic Expressions 29
4.5 Spot the Mistakes 30
Chapter Review 32

1 Introduction
 to Algebra

1.1 Basics of Algebra

- Algebra is the use of symbols to represent an unknown variable.
- A constant will have a fixed value. A variable is a value that is not fixed.
- Lower case alphabets are often used to represent the unknown, for example x, m, n, t, r.
- x is just an algebraic symbol, it is not ' x ' as in the multiplication sign. To avoid confusion, we use bracket () or ' \cdot '.
- An algebraic expression is made up of more than 1 algebraic terms and/or constant.

Algebraic terms	Algebraic Expressions
$10 a$	$10 a+20 b+5$
$-25 y$	$12 x-25 y$
$\frac{1}{2} s$	$\frac{1}{2} s+10 r-3$
$x y$	$x y+3 y$

$10 a+20 b+5$

1
Coefficient of a is 10

2.3 Simple Addition Involving Quadratic Terms

- Most schools introduce quadratic expressions in Secondary 2. However, some schools may do that in Secondary 1. Thus we shall cover this briefly in this book.
- Quadratic terms are terms that carry a power of 2 . Example of quadratic terms are $x^{2}, b^{2}, n^{2}, x^{2} y$ $a^{2} b$.
- $a \cdot a=a^{2}, y \cdot y=y^{2}$

Examples

Algebraic Expressions	Like terms	Add and Simplify
$b^{2}+b^{2}$	b^{2}, b^{2}	$2 b^{2}$
$x^{2}+3 x^{2}$	$x^{2}, 3 x^{2}$	$4 x^{2}$
$12 y^{2}-9 y^{2}$	$12 y^{2},-9 y^{2}$	$3 y^{2}$
$x^{2} y+3 x y^{2}$	No like terms	$x^{2} y+3 x y^{2}$

Note!

$x^{2} y$ and $x y^{2}$ are unlike terms. Just like x and $x y$ are unlike terms.

Practice 2.3

Simplify the following algebraic expressions.
(1) $y^{2}+10 y^{2}$
(2) $m^{2}+7 m^{2}+n^{2}$
(3) $y^{2}+5 x y^{2}+5 y^{2}$
(4) $a b^{2}+5 a b^{2}+15 a b^{2}$
(5) $8 x^{2}+5 y^{2}+37 x^{2}+15 y^{2}$
(6) $10 a+19 a^{2}+9 a^{2}+3 a$
(7) $5 m n^{2}+5 m^{2}+17 m n^{2}+10 m^{2}$
(8) $45 s^{2} t+5 s t^{2}+17 s t^{2}+10 s^{2} t$

3.2 Simple Subtraction Involving 2 or More Variables

- Similarly, we can subtract only like terms.
- If there is an addition and subtraction within one expression, you can add or subtract in any order.
- For example, $2 m-m+3 m$ will give same result as $3 m+2 m-m$ and $-m+2 m+3 m$

汤
 Examples

Algebraic Expressions	Like terms	Add and Simplify
$a-2 a+b$	$a,-2 a$	$-a+b$
$s-10 s-3 t-7 t$	$s,-10 s$	
$-3 t,-7 t$	$-9 s-10 t$	
$12 x-4 x y-4 y$	No like terms	$12 x-4 x \mathrm{y}-4 \mathrm{y}$
$10 n-8 m n-12 m n$	$-8 m n,-12 m n$	$10 n-20 m n$

Note!

$m n$ and n are unlike terms. Just like x and $x y$ are unlike terms.

Practice 3.2

Simplify the following algebraic expressions.
(1) $9 x+2-x-8 y$
(2) $9 a b-8 a-2 a-6 a b$
(3) $5 y+5 x y-5 y$
(4) $-10 a b+12-b-17 b+a b$
(5) $10 a b-2+b-17 b-a b$
(6) $-8 d+23-c d-13 c d+4 d$
(7) $x y z-2 x y+x y-7 x y z-7 x y$
(8) $-8 m-2 m n-7 n-22 m+8 m n$

