Contents

1	Introduction to Algebra		
	1.1	Basics of Algebra	1
	1.2	Basics of Operations in Algebra	2
		Chapter Review	7
2	Ad	dition and Subtraction of Quadratic Expressions	8
	2.1	Introduction to Quadratic Terms and Expressions	8
		Like and Unlike Quadratic Terms	9
	2.3	Negative of Quadratic Expressions	10
	2.4	Addition and Subtraction of Quadratic Expressions	12
	2.5	Addition and Subtraction of Quadratic Expressions Involving Fractions	13
	2.6	Spot the Mistakes!	15
		Chapter Review	16
3	Ex	pansion of Algebraic Expressions	17
	3.1	Basic Expansion and Simplification of Algebraic Expressions	18
		Further Expansion and Simplification of Algebraic Expressions	19
	3.3	More Complex Expansion and Simplification of Algebraic Expressions	22
	3.4	Expansion Using Special Algebraic Identities	25
		Spot the Mistakes!	29
		Chapter Review	30
4	Fac	ctorisation of Quadratic Expressions	31
	4.1	Factorisation of Quadratic Expressions Using Multiplication Frame	32
		Further Factorisation of Quadratic Expressions	37
		Further Factorisation Involving 2 or More Variables	44
		Factorisation Using Algebraic Identities	52
		Factorisation Using Grouping	61
		Spot the Mistakes!	70
		Chapter Review	72

1 Introduction to Algebra

1.1 Let's Recap Algebra Skills from Secondary 1

Basics of Algebra

- Algebra is the use of symbols to represent an unknown variable.
- A constant has a fixed value whereas a variable has a value that is not fixed.

• Like and unlike terms

Algebraic Expressions	Like terms
14a + 2a + 5	14 <i>a</i> , 2 <i>a</i>
7x - 25y - 12x	7x, -12x
$\frac{1}{6}t + 10st - 3st$	10 <i>st</i> , -3 <i>st</i>
yx + 3y - 10xy + 23 - 10	yx, -10xy 23, -10

xy and *y* are unlike terms! *xy* and are like terms!

1.2.5 Four Operations in Algebra

- Just like numbers, we follow the same rules when it comes to algebraic expressions.
- We can use the acronym BODMAS to solve algebraic expression involving more than one operations. The table below summarises the use of BODMAS.

В	Solve the operations within the B rackets first. If there are more than one bracket, solve the innermost bracket first. Apply BODMAS within the bracket.
Ο	Evaluate indices and p \mathbf{O} wers. Example, square, square root etc
DM	Evaluate ${f D}$ ivision and ${f M}$ ultiplication. Do it from left to right.
AS	Evaluate A ddition and S ubtraction. Do it from left to right.

• Examples of BODMAS application in algebraic expressions

3m + n - 2m + 5(m - 3n) = 3m + n - 2m + 5m - 15n = 6m - 14n	(2f - 4g) - (f - 4g + 3f) = 2f - 4g - (4f - 4g) = 2f - 4g - 4f + 4g = -2f
$11(xy^{2} - 2y) - 27x^{2}y \div 3x^{2}$ = 11xy ² - 22y - 9y = 11xy ² - 31y	$(-45s^{2}t) \div 9t - (3s)(4s) + 4t^{2}$ = -5s ² - 12s ² + 4t ² = -17s ² + 4t ²
18y + 7[10x - 4(y - 3x)] = 18y + 7[10x - 4y + 12x] = 18y + 7[22x - 4y] = 18y + 154x - 28y = 154x - 10y	$(-42s^{2}t) \div 6t - (7s)(4s) + 4t^{2}$ = -7s ² - 28s ² + 4t ² = -35s ² + 4t ²

Quiz A

• State the constants, co-efficient of the algebraic terms in the following algebraic expression $2x - \frac{1}{2}xy$.

Constant = Co-efficient of *xy* =

Co-efficient of x =

- 2 Simplify the following algebraic expression. 8m + 16n + 2mn + 10mn + 3n
- 3 Simplify the following algebraic expression. 22mn - m - 12m - 4nm
- Simplify the following algebraic expression. -5(16n-20p)

• Simplify the following algebraic expression. $39b \div 3b^3$

• Write algebraic expression for this phrase: the difference of 5 and *k* square divided by the product of *m* and *n*.

Factorise the algebraic expression completely. $-15q^2p^3 - 80q^3p^2$

- 8 Solve the equation. 22 - 7b = 48 - 3b
- 9 Solve the equation. 12(4-17x) = 84(8x-10)

1 Solve the equation. $\frac{1}{2+r} + \frac{1}{4} = 12$

Quiz B

- Write algebraic expression for this phrase: Half of *xy* plus *u*.
- 2 Simplify the following algebraic expression. 10mn - m + 12m - nm
- 3 Simplify the following algebraic expression. $9v - 9v^2 - 19v^2 - 9v$
- Write an algebraic expression for this phrase: Subtract *efg* from 10*xyz*.
- Simplify the following algebraic expression. (14b-d)(10b-20d)
- Write an algebraic expression for this phrase:4h divided by 2k.
- Simplify the following algebraic expression. $\frac{2(2x-3y)}{5} - \frac{(x-3y)}{15} + 1$
- **8** Factorise the algebraic expression completely. 24p+16pqr-32pr
- 9 Solve the equation. 0.6x + 17.4 = 2(1.7 + 1.8x)
- Solve the equation. 3.4(5h-2.5) = 2.4(1.3-0.8h).

Simplify the Quadratic Expressions	Notes
$\frac{\frac{8}{9}x^2 - \frac{7}{9}x^2}{= \frac{8x^2 - 7x^2}{9}}$ $= \frac{x^2}{9} \text{ or } \frac{1}{9}x^2$	Like terms: $\frac{8}{9}x^2, -\frac{7}{9}x^2$ Since both fractions have the same denominators, there is no need to change into a common denominator. Note! $\frac{8}{9}x^2$ is the same as $\frac{8x^2}{9}$
$\frac{\frac{8}{9}x^2 - \frac{7}{27}x^2}{= \frac{24}{27}x^2 - \frac{7}{27}x^2}$ $= \frac{24x^2 - 7x^2}{27}$ $= \frac{17x^2}{27} \text{ or } \frac{17}{27}x^2$	Like terms: $\frac{8}{9}x^2, -\frac{7}{27}x^2$ LCM of 9 and 27 will be the common denominator.
$-3x^{2} - \frac{8}{11}xy + x^{2} - \frac{7}{11}xy$ $= -3x^{2} + x^{2} - \frac{8}{11}xy - \frac{7}{11}xy$ $= -2x^{2} - \frac{15}{11}xy \text{ or } = -2x^{2} - 1\frac{4}{11}xy$	Like terms: $-3x^{2}, x^{2}$ $-\frac{8}{11}xy, -\frac{7}{11}xy$
$22x - \frac{8}{19}x^2y + x^2 + \frac{13}{19}x^2y$ $= -\frac{8}{19}x^2y + \frac{13}{19}x^2y + x^2 + 22x$ $= \frac{5}{19}x^2y + x^2 + 22x$	Like terms $-\frac{8}{19}x^2y, \frac{13}{19}x^2y$ Always try to put the quadratic terms at the beginning, even if it has a negative co-efficient.
$5a^{2} - \left(4a^{2} + \frac{8}{11}ab + a^{2} - \frac{7}{22}ab\right)$ $= 5a^{2} - \left(4a^{2} + a^{2} + \frac{8}{11}ab - \frac{7}{22}ab\right)$ $= 5a^{2} - \left(5a^{2} + \frac{16}{22}ab - \frac{7}{22}ab\right)$ $= 5a^{2} - 5a^{2} - \frac{9}{22}ab$ $= -\frac{9}{22}ab$	Firstly, simplify the terms within the parenthesis. Next, remove the parenthesis.